Last updated on April 23, 2014 at 17:08 EDT

General Relativity

General Relativity — General Relativity is the common name for the theory of gravitation published by Albert Einstein in 1915.

According to general relativity the force of gravity is a manifestation of the local geometry of spacetime. Although the modern theory is due to Einstein, its origins go back to the axioms of Euclidean geometry and the many attempts over the centuries to prove Euclid’s fifth postulate, that parallel lines remain always equidistant, culminating with the realisation by Bolyai and Gauss that this axiom need not be true.

The general mathematics of non-Euclidean geometries was developed by Gauss’ student, Riemann, but these were thought to be wholly inapplicable to the real world until Einstein had developed his theory of relativity.

The special theory of relativity (1905) modified the equations used in comparing the measurements made by differently moving bodies, in view of the constant value of the speed of light: this had the consequence that physics could no longer treat space and time separately, but only as a single four-dimensional system, “space-time,” which was divided into “time-like” and “space-like” directions differently depending on the observer’s motion. The general theory added to this that the presence of matter “warped” the local space-time environment, so that apparently “straight” lines through space and time have the properties we think of “curved” lines as having.

Outline of the Theory

The fundamental idea in relativity is that we cannot talk of the physical quantities of velocity or acceleration without first defining a reference frame, and that a reference frame is defined by choosing particular matter as the basis for its definition. Thus all motion is defined and quantified relative to other matter. In the special theory of relativity it is assumed that reference frames can be extended indefinitely in all directions in space and time.

The theory of special relativity concerns itself with inertial (non-accelerating) frames while general relativity deals with all frames of reference. In the general theory it is recognised that we can only define local frames to given accuracy for finite time periods and finite regions of space (similarly we can draw flat maps of regions of the surface of the earth but we cannot extend them to cover the whole surface without distortion). In general relativity Newton’s laws are assumed to hold in local reference frames. In particular free particles travel in straight lines in local inertial (Lorentz) frames. When these lines are extended they do not appear straight, and are known as geodesics. Thus Newton’s first law is replaced by the law of geodesic motion.

We distinguish inertial reference frames, in which bodies maintain a uniform state of motion unless acted upon by another body, from non-inertial frames in which freely moving bodies have an acceleration deriving from the reference frame itself. In non-inertial frames there is a perceived force which is accounted for by the acceleration of the frame, not by the direct influence of other matter. Thus we feel g-forces when cornering on the roads when we use a car as the physical base of our reference frame.

Similarly there are coriolis and centrifugal forces when we define reference frames based on rotating matter (such as the Earth or a child’s roundabout). The principle of equivalence in general relativity states that there is no local experiment to distinguish non-rotating free fall in a gravitational field from uniform motion in the absence of a gravitational field.

In short there is no gravity in a reference frame in free fall. From this perspective the observed gravity at the surface of the Earth is the force observed in a reference frame defined from matter at the surface which is not free, but is acted on from below by the matter within the Earth, and is analogous to the g-forces felt in a car.

Mathematically, Einstein models space-time by a four-dimensional pseudo-Riemannian manifold, and his field equation states that the manifold’s curvature at a point is directly related to the stress energy tensor at that point; the latter tensor being a measure of the density of matter and energy. Curvature tells matter how to move, and matter tells space how to curve. The field equation is not uniquely proven, and there is room for other models, provided that they do not contradict observation.

General relativity is distinguished from other theories of gravity by the simplicity of the coupling between matter and curvature, although we still await the unification of general relativity and quantum mechanics and the replacement of the field equation with a deeper quantum law. Few physicists doubt that such a theory of everything will give general relativity in the appropriate limit, just as general relativity predicts Newton’s law of gravity in the non-relativistic limit.

Einstein’s field equation contains a parameter called the “cosmological constant” Λ which was originally introduced by Einstein to allow for a static universe (ie one that is not expanding or contracting). This effort was unsuccessful for two reasons: the static universe described by this theory was unstable, and observations by Hubble a decade later confirmed that our universe is in fact not static but expanding. So Λ was abandoned, but quite recently, improved astronomical techniques have found that a non-zero value of Λ is needed to explain some observations.



Click here to learn more on this topic from eLibrary:

General Relativity