Lighting up a Dead Stars Layers
2845 of 4072

Lighting up a Dead Star's Layers

October 27, 2006

This image from NASA's Spitzer Space Telescope shows the scattered remains of an exploded star named Cassiopeia A. Spitzer's infrared detectors "picked" through these remains and found that much of the star's original layering had been preserved.

Cassiopeia A, or Cas A for short, is what is known as a supernova remnant. The original star, about 15 to 20 times more massive than our sun, died in a cataclysmic "supernova" explosion relatively recently in our own Milky Way galaxy. Like all mature massive stars, the Cas A star was once neat and tidy, consisting of concentric shells made up of various elements. The star's outer skin consisted of lighter elements, such as hydrogen; its middle layers were lined with heavier elements like neon; and its core was stacked with the heaviest elements, such as iron.

Until now, scientists were not exactly sure what happened to the Cas A star when it ripped apart. One possibility is that the star exploded in a more or less uniform fashion, flinging its layers out in successive order. If this were the case, then those layers should be preserved in the expanding debris. Previous observations revealed portions of some of these layers, but there were mysterious gaps.

Spitzer was able to solve the riddle. It turns out that parts of the Cas A star had not been shot out as fast as others when the star exploded. Imagine an onion blasting apart with some layered chunks cracking off and zooming away, and other chunks from a different part of the onion shooting off at slightly slower speeds.

In this false-color image, the faint, blue glow surrounding the dead star is material that was energized by a shock wave, called the forward shock, which was created when the star blew up. The forward shock is now located at the outer edge of the blue glow. Stars are also seen in blue. Green, yellow and red primarily represent material that was ejected in the explosion and heated by a slower shock wave, called the reverse shock wave.

The picture was taken by Spitzer's infrared array camera and is a composite of 3.6-micron light (blue); 4.5-micron light (green); and 8.0-micron light (red).

comments powered by Disqus