Quantcast
Self-Assembly of Gold-Polymer Nanorods
2646 of 3588

Self-Assembly of Gold-Polymer Nanorods

June 22, 2010
Self-Assembly of Gold-Polymer Nanorods This image depicts the self-assembly of gold-polymer nanorods into a curved structure. National Science Foundation (NSF)-supported research by Chad Mirkin at Northwestern University has generated nanostructures with the ability to curve. These are the first nanostructures to exhibit this ability -- a critical requirement for the utility of nanomaterials in further applications including drug-delivery systems, nanoscale electronics, catalysts and light-harvesting materials. NSF is the lead agency for the National Nanotechnology Initiative, a multiagency network working to bolster nanotechnology and ensure U.S. dominance in this emerging field. Strong research efforts are critical to capitalize on nanotechnology's potential to revolutionize science and engineering and to harness all that it offers. More about this ImageInspired by the molecular assembly techniques used in living cells, chemist Chad Mirkin and his colleagues at Northwestern University have created a new class of nanometer-scale building blocks that can spontaneously assemble themselves into ultra-tiny spheres, tubes and curved sheets. This is the first time that scientists have been able to make structures on this scale that curve in any fashion, as opposed to being straight or flat. Since the Mirkin group can also control the size and curvature of their structures very accurately, the technology could eventually lead to important applications in nanoscale electronics and drug-delivery systems. Mirkin and his colleagues were supported in part by the National Science Foundation (NSF), and published their discovery in the 16 January 2004 issue of the journal Science. A press release detailing their work is available from Northwestern here. (Date of Image: acceptance to be published Dec. 9, 2003)


comments powered by Disqus