Quantcast
Last updated on April 18, 2014 at 21:21 EDT
Studying Jeweled Beetles Iridescence Image 2
708 of 3476

Studying Jeweled Beetle's Iridescence (Image 2)

July 25, 2012
A jeweled beetle Chrysina gloriosa. The enlarged image in the background shows the insect's light-reflecting structures. Researchers from the Georgia Institute of Technology studied the surface structures on the beetle's shell and discovered that the iridescent colors are produced from liquid crystalline material that self-assembles into a complex arrangement of polygonal shapes. [Image 2 of 4 related images. See Image 3.] More About This Image Mohan Srinivasarao, a professor at the School of Polymer, Textile and Fiber Engineering at Georgia Tech, received a grant from the National Science Foundation (NSF) to study what gives the jeweled beetle's shell its iridescence. Iridescent beetles, butterflies, certain sea organisms and many birds get their unique colors from the interaction of light with physical structures on their external surfaces. Srinivasarao worked with colleagues Vivek Sharma, Matija Crne and Jung Ok Park to study the surface structures on the shells. The team published a detailed analysis in Science magazine of how the jeweled beetle Chrysina gloriosa uses a helical structure that reflects light of two specific colors, and of only one polarization--left circular polarization, to create their striking colors. The reflecting structures used by the beetle consist predominately of three different polygonal shapes--primarily hexagons, pentagons and heptagons, each less than 10 microns in size--whose percentages vary with the curvature of the insect's shell. "This is really a pattern formation issue," said Srinivasarao. "It is difficult to pack only hexagons onto a curved surface. On flat surfaces, there are fewer defects in the form of five- and seven-sided cells." Srinivasarao believes the patterns are due to the nature of the cholesteric liquid crystal and because the liquid crystal phase structures itself at the interface between air and fluid. "We think these patterns result because the liquid crystal must have defects on the surface when exposed to air, and those defects create the patterns in the beetle's shell or exoskeleton," says Srinivasarao. Studying these shimmery shells may lead to new insights into liquid crystal technology. "Understanding how these structures give rise to the stunning colors we see in nature could benefit the quest for miniature optical devices and photonics," said Srinivasarao. Liquid crystalline materials have many uses, from displays for laptop computers to portable music players and other devices to children's thermometers. This information was taken from the Georgia Tech news release "Jeweled Beetles: Scientists Unlock Optical and Liquid Crystal Secrets of Iridescent Metallic Green Insects." Credit: Georgia Tech; photo by Gary Meek