Time Sequence of the Pulsar in the Crab Nebula
328 of 356

Time Sequence of the Pulsar in the Crab Nebula

April 22, 2005
In combination with the large light collecting power of the VLT Unit Telescopes, the high time resolution (25 nsec = 0.000000025 sec) of the ESO-developed FIERA CCD-detector controller opens a new observing window for celestial objects that undergo light intensity variations on very short time scales. A first implementation of this type of observing mode was tested with FORS2 during the first commissioning phase, by means of one of the most fascinating astronomical objects, the rapidly spinning neutron star in the Crab Nebula. It is also known as the Crab pulsar and is an exceedingly dense object that represents an extreme state of matter - it weighs as much as the Sun, but measures only about 30 km across.

The result presented here was obtained in the so-called trailing mode, during which one of the rectangular openings of the Multi-Object Spectroscopy (MOS) assembly within FORS2 is placed in front of the lower end of the field. In this way, the entire surface of the CCD is covered, except the opening in which the object under investigation is positioned. By rotating this opening, some neighbouring objects (e.g. stars for alignment) may be observed simultaneously. As soon as the shutter is opened, the charges on the chip are progressively shifted upwards, one pixel at a time, until those first collected in the bottom row behind the opening have reached the top row. Then the entire CCD is read out and the digital data with the full image is stored in the computer. In this way, successive images (or spectra) of the object are recorded in the same frame, displaying the intensity variation with time during the exposure.

For this observation, the total exposure lasted 2.5 seconds. During this time interval the image of the pulsar (and those of some neighbouring stars) were shifted 2048 times over the 2048 rows of the CCD. Each individual exposure therefore lasted exactly 1.2 msec (0.0012 sec), corresponding to a nominal time-resolution of 2.4 msec (2 pixels). Faster or slower time resolutions are possible by increasing or decreasing the shift and read-out rate.

In this image, the continuous lines in the top and bottom half are produced by normal stars of constant brightness, while the series of dots represents the individual pulses of the Crab pulsar, one every 33 milliseconds (i.e. the neutron star rotates around its axis 30 times per second).

comments powered by Disqus