Quantcast
Last updated on April 16, 2014 at 1:21 EDT

Freezing nerves knocks pain out cold

April 14, 2013

Minimally invasive cryoneurolysis alleviates chronic pain

NEW ORLEANS, April 14, 2013 /PRNewswire-USNewswire/ —

Highlights

  • By freezing damaged nerves, minimally invasive cryoneurolysis can safely relieve the agonizing chronic pain caused by damaged nerves.
  • Nerve-damaged patients said they experienced significant pain relief after treatment, in which a tiny ice ball froze the nerve, short circuiting pain signals sent to the brain.
  • More than 15 million Americans suffer from chronic nerve pain, including people with diabetes and cancer.
  • Interventional radiologists are physicians who specialize in minimally invasive targeted treatments.

Using a tiny ball of ice, a minimally invasive interventional radiology treatment called cryoneurolysis safely short circuits chronic pain caused by nerve damage, according to data being presented at the Society of Interventional Radiology’s 38th Annual Scientific Meeting in New Orleans.

(Logo: http://photos.prnewswire.com/prnh/20100127/SIRLOGO )

“Cryoneurolysis could have big implications for the millions of people who suffer from neuralgia, which can be unbearable and is very difficult to treat,” said William Moore, M.D., medical director of radiology at Stony Brook University School of Medicine in Stony Brook, N.Y. “Cryoneurolysis offers these patients an innovative treatment option that provides significant lasting pain relief and allows them to take a lower dose of pain medication–or even skip drugs altogether,” added Moore, an interventional thoracic radiologist at Stony Brook.

More than 15 million Americans and Europeans suffer from neuralgia, in which nerves are damaged by diabetes, surgery or traumatic injury, Moore noted. Sufferers often rely on pain medications, which have side effects and may not provide enough relief. Cryoneurolysis uses a small probe that is cooled to minus 10 to minus 16 degrees Celsius, creating a freezer burn along the outer layer of the nerve. This interrupts the pain signal to the brain and blunts or eliminates the pain while allowing the damaged nerves to grow over time, explained Moore.

In the study, 20 patients received cryoneurolysis treatment for a variety of neuralgia syndromes and were evaluated using a visual pain scale questionnaire immediately after treatment during one-week, one-month and three-month follow-ups after the initial procedure. Prior to treatment, patients’ pain plummeted from an average of 8 out of 10 on the pain scale to 2.4 one week after treatment. Pain relief was sustained for about two months after the procedure. Pain increased to an average of 4 out of 10 on the scale after six months due to nerve regeneration, Moore said. He recommends repeat cryoneurolysis treatments as needed per patient, however, some patients will receive up to a year of pain relief from a single treatment, he said.

In the treatment, an interventional radiologist makes a nick in the skin near the source of pain and inserts a small probe about the size of an IV needle that is used to draw blood. Under imaging guidance, the probe is advanced through the skin to the affected nerves. Cooled with pressurized gas, the probe creates ice crystals along the edge of the nerves. “The effect is equivalent to removing the insulation from a wire, decreasing the rate of conductivity of the nerve. Fewer pain signals means less pain, and the nerve remains intact,” he explained. Additional comparative studies are needed, said Moore.

More information about the Society of Interventional Radiology, interventional radiologists and minimally invasive treatments can be found online at www.SIRweb.org.

Abstract 30: “Prospective Evaluation of Cryoneurolysis for Refractory Neuralgia,” A.T. Ryan, V. Grechushkin, W. Moore, radiology, B. Durkin, anesthesiology, SUNY Stony Brook, Stony Brook, N.Y., SIR 38th Annual Scientific Meeting, April 13-18, 2013. This abstract can be found at www.SIRmeeting.org.

About the Society of Interventional Radiology
Interventional radiologists are physicians who specialize in minimally invasive, targeted treatments. They offer the most in-depth knowledge of the least invasive treatments available coupled with diagnostic and clinical experience across all specialties. They use X-ray, MRI and other imaging to advance a catheter in the body, such as in an artery, to treat at the source of the disease internally. As the inventors of angioplasty and the catheter-delivered stent, which were first used in the legs to treat peripheral arterial disease, interventional radiologists pioneered minimally invasive modern medicine. Today, interventional oncology is a growing specialty area of interventional radiology. Interventional radiologists can deliver treatments for cancer directly to the tumor without significant side effects or damage to nearby normal tissue.

Many conditions that once required surgery can be treated less invasively by interventional radiologists. Interventional radiology treatments offer less risk, less pain and less recovery time compared to open surgery. This year, SIR celebrates 40 years of innovation and advances in interventional radiology. Visit www.SIRweb.org.

The Society of Interventional Radiology is holding its 38th Annual Scientific Meeting April 13-18 at the Ernest N. Morial Convention Center, New Orleans. The theme of the meeting is ‘IR Reaching Out,’ adopted to illustrate the many ways the Annual Scientific Meeting provides valuable education to attendees with a broad range of diverse clinical interests and practice settings.

SOURCE Society of Interventional Radiology


Source: PR Newswire