Quantcast

Disguise Helps Nanosponge Fight Superbug Infections

April 28, 2014
Image Credit: National Science Foundation

[ Watch The Video: Nanosponge Decoy Fights Superbug Infections ]

National Science Foundation

A good disguise enables the nanosponge to soak up toxins from drug-resistant infections or poisons

Our first instinct with infection in the body is often to find it and get rid of it! But, engineer Liangfang Zhang had another idea. With support from the National Science Foundation (NSF), Zhang and his team at the University of California, San Diego (UCSD), have created a nanosponge to combat drug-resistant infections, such as those caused by Methicillin-resistant Staphylococcus aureus (MRSA).

The nanosponge, made from biocompatible, biodegradable polymer nanoparticles, is camouflaged with a red blood cell membrane. It circulates in the bloodstream, absorbing the toxins produced by infection. One red blood cell membrane can be used as a cloak for more than 3,000 of these stealthy nanosponges. Once the nanosponges are fully loaded with toxins, they are safely disposed of by the liver. They are designed to work with any type of infection or poison that attacks the cellular membrane.

Zhang is working closely with doctors and students at the UCSD Moores Cancer Center on this “nano” approach to tackling infections. He has been testing his approach on mice, with nearly a 100 percent success rate against staph infections. Human clinical trials are the next step!

The research in this episode was funded by NSF award #1216461, EAGER: Red Blood Cell Membrane Camouflaged Nanoparticles for Drug Delivery.


Source: National Science Foundation



comments powered by Disqus