Quantcast

Every Breath You Make Tells of All Your Aches

July 13, 2008

By Ehrenberg, Rachel

Scientists look at exhaled compounds to diagnose ills Scientists would like to take your breath away. Literally.

Exhaled vapor holds clues to your health, revealing much more than what you ate for lunch. In recent years, researchers have been scrutinizing the misty mixture of molecules with fervor, seeking evidence of conditions ranging from sleep apnea to cancer.

Breath can also reveal exposure to pollutants such as benzene and chloroform, providing a measure of internal dose that is missed by sampling polluted air.

“The lung is a soggy mess of tubes and sacs whose job is to exchange gases from blood into breath,” says Joachim D. Pleil, an analytical chemist and environmental health scientist with the U.S. Environmental Protection Agency. “The breath is a window into the blood.”

Collecting and analyzing breath is emerging as a kinder, gentler means for surveying the body, a complement to old standbys such as blood and urine tests, or invasive techniques that irritate the lungs, says Pleil, who reviews the role of exhaled breath analysis in an upcoming issue of the Journal of Toxicology and Environmental Health, Part B.

“You might have a 90-year-old man on a respirator, and it’s hard to tap a vein,” he says. “Or an 800-gram infant who doesn’t make enough urine in a week to analyze. That infant is always breathing.”

Even the ancients knew that there’s more to breath than meets the eye. Doctors have been sniffing breath for indications of disease since Hippocrates’ day. The sweet smell of acetone is a flag for diabetes, and advanced liver disease is said to make the breath reek of fish. Breath is more than 99 percent water, but roughly 3,000 other compounds have been detected in human breath – the average sample contains at least 200. There are also bits of DNA, proteins and fats floating in the mist.

While research is being published at a rapid rate (more than 50 breath-related papers so far in 2008), scientists are still figuring out which breath-bound molecules are most meaningful and what collection methods work best.

“It’s unclear what we should be looking for in there – there’s stuff from A to Z,” says Rohit Katial, director of the allergy and immunology program at the National Jewish Medical and Research Center in Denver. Breath is “an intriguing source of a bodily sample,” he says. “But it is still in its infancy-the detection techniques just aren’t there yet.”

Although the results are still hazy in some areas of the research, breath analysis is a reliable noninvasive means of detecting certain ills, such as lung inflammation, says John Hunt, a respiratory medicine specialist at the University of Virginia Children’s Hospital in Charlottesville. Breath from a normal airway is mildly alkaline, about pH 8, but someone with acute respiratory disease might have an acidic breath pH of 3. “Kind of like putting lemonade in your eye,” Hunt says.

A breath sample with a pH of 7.4 or lower is a red flag, Hunt says. It might mean acid reflux – liquid from the stomach sloshing into the esophagus.

But a low breath pH can also mean the lungs are inflamed due to asthma, pulmonary disease or lung transplant rejection. Traditional tests for acid reflux entail winding a pH probe through the nose and into the esophagus – 24 hours later it’s removed and the patterns of acidity are analyzed. But similar patterns appear in the pH of breath samples, says Hunt, cofounder of a company that makes equipment for collecting breath.

This can save time and medications directed at heartburn by steering a doctor toward other lung irritants such as a viral infection or exposure to nastiness, such as diesel emissions or chlorine gas.

There is also a common breath test for Helicobacter pylori, the stomachinfecting bacterium that causes some ulcers. H. pylori has an enzyme-which humans lack- that breaks down urea. The patient drinks a cocktail laced with urea made with a heavy carbon isotope. If the bacterium has taken up residence, it breaks down the urea, and the heavy carbon isotope is detectable in breath.

Scientists are also investigating volatile compounds in breath to see if there is a predictable compound or pattern in people with certain cancers. Cancerous cells burp different compounds than healthy cells do – researchers have identified more than 20 of these volatiles. In papers published in Cancer Biomarkers last fall and in Clinica Chimica Acta in March, researchers present two analyses comparing the compounds in the breath of 193 lung cancer patients with 211 controls. Both models correctly identified the lung cancer patients about 84 percent of the time.

The target molecules dictate the collection method, says Michael C. Madden, a toxicologist with the EPA. In the June Journal of Breath Research, Madden, Pleil and colleagues published a collection method that uses readily available equipment – a small glass bulb and tube – and that allows many samples to be prepared and stored at once.

Generally, collecting breath involves breathing into the collection tube with the strength used to play a trumpet. About five minutes of breathing yields a milliliter of breath condensate. Samples can then be capped, frozen if necessary and brought to a lab for analysis.

The analysis side of things is where more work is needed, Hunt says. “That’s the downside,” he says. “Many of the assays are difficult to do. It’s easy for the patient but tough for the lab.”

An expanding area of research involves looking for proteins made by distressed cells, Madden says. Lung cells that have been attacked by a pollutant often make interleukin-8, a protein that recruits immune system cells from the blood. If hundreds of school children were exposed to diesel exhaust, for example, breath analysis could reveal interleukins or other cytokines, giving a quick take on how the kids’ lungs are dealing with the assault.

“If you want something for the field, you really need a noninvasive technique,” says Muge Akpinar-Elci. While with the National Institute for Occupational Safety and Health in Morganstown, W. Va., she studied workers in a water-damaged office building. Akpinar-Elci and colleagues reported in the April Indoor Air that the amount of interleukin-8 in breath samples stood out among workers who had asthmalike symptoms.

Eventually, says Madden, suites of proteins might be identified that indicate specific exposures. “If you look at 100 proteins, do 10 stick out as unique to smokestack emissions or 10 for ozone exposure?” Better collaboration between physicians on the clinical side and scientists on the environmental side would help move that prospect along, he says.

“It’s a fun and expanding field – an up-and-coming research tool that people are really trying hard to translate into the clinical world,” Hunt says. “I think a lot will happen in the next few years. Eventually, we’ll be able to smell how people are doing.”

A person’s breath is more than 99 percent water-and a cocktail of many other molecules. The amounts of various molecules can serve as markers for some diseases, such as lung cancer.

“The breath is a window into the blood.”

Joachim D. Pleil, EPA

Back Story A brief history of breath as evidence

ca. 400 B.C.

Hippocrates writes that the aroma of breath holds clues for diagnosing disease.

1784

Lavoisier and Laplace analyze guinea pig breath, learning that animals take in oxygen and exhale CO2.

1953

Robert Borkensteln Invents the Breathalyzer, unique In Its portability.

1971

Linus Pauling measures more than 200 chemical compounds in exhaled human breath.

1990s

Inspired by PaulIng, Michael Phillips starts Menssana Research. A key device Is the company’s Breathscanner.

2004

The FDA approves the Menssana’s Heartsbreath test, created to detect the body’s rejection of a heart transplant.

Copyright Science Service, Incorporated Jul 5, 2008

(c) 2008 Science News. Provided by ProQuest Information and Learning. All rights Reserved.




comments powered by Disqus