Quantcast

Nanotechnology Tackles Major Problems Associated With Chemotherapy

February 26, 2010

Additional research focuses on practical application of nanotechnology across a wide range of fields including homeland defense and the environment

Huixin He, associate  professor of nanoscale chemistry at Rutgers University, Newark, and Tamara Minko, professor at the Rutgers Ernest Mario School of Pharmacy, have developed a nanotechnology approach that potentially could eliminate the problems of side effects and drug resistance in the treatment of cancer. Under traditional chemotherapy, cancer cells, like bacteria, can develop resistance to drug therapy, leading to a relapse of the disease.

As reported in the December 21, 2009, issue of the journal Small, He, Minko and their co-researchers, including investigators from Merck & Co. and Carl Zeiss SMT, a global nanotechnology firm, have designed nanomaterials that allow for the delivery of both a chemical (doxorubicin) to destroy cancer cells and a genetic drug to prevent drug resistance.

When administered to drug-resistant ovarian cancer cells, the treatment was more than 130 times lethal than when doxorubicin was administrated alone. “The drug can only be released when it is inside the cancer cells,” He said. “This controlled internal release mechanism can dramatically eliminate side effects associated with anticancer drugs to normal tissues.”

Battling Aggressive Breast Cancer with Nanotubes

In related research, Professor He and another team of co-researchers have developed single-walled carbon nanotubes that hold the potential of providing a more effective means for detecting and selectively destroying aggressive breast cancer cells.

In a paper published in BMC Cancer late last year, the researchers showed that by chemically bonding a special antibody onto the nanotubes and taking advantage of two unique properties of carbon nanotubes, single cancer cells can be detected and selectively eradicated while leaving the nearby normal cells unharmed. The uniqueness of this approach is that it is more easily extended to other types of cancer cells. He’s research in the areas of cancer detection and treatment is funded in part with grants from the National Science Foundation and National Cancer Institute.

Research Focuses on Practical Applications Across a Wide Range of Fields

The application of He’s research is far and wide. He and members of her lab at Rutgers are working on the practical application of nanomaterials as a diagnostic tool for Parkinson’s disease. Other research is focused on the development of a platform to detect the presence of chemical warfare agents for homeland defense. He and her lab members are also working on nanotechnology to measure iron ions in ocean atmosphere dust and sea water, which is critical for the study of greenhouse gases and climate change.

At Rutgers, He teaches undergraduate courses in analytical chemistry and graduate courses in electrochemical analytical chemistry. She is the recipient of the 2009 Rutgers Presidential Fellowship for Teaching Excellence.

On the Net:




comments powered by Disqus