Quantcast

Baby Brain ‘Wiring’ Sheds Light On Psychiatric Disorders

January 12, 2011

British scientists have shown how our brain “wiring” develops in the womb and say their findings will help in the understanding of a range of brain and psychiatric disorders.

Researchers from the Institute of Psychiatry at King’s College London scanned babies’ brains to monitor the formation of insulating layers around nerve cells.

They discovered that by the age of nine months, the process was visible in all brain areas and in some regions had developed a near adult-like level.

“We already know that insulating myelin sheaths form the cornerstone of our neurodevelopment. Without them, messages to and from the brain would be in disarray,” Sean Deoni, who led the study, wrote in the Journal of Neuroscience.

“By understanding exactly how myelin develops and when this process breaks down, we hope to be able to tailor treatments for vulnerable patients, such as premature babies, and understand what differentiates those that develop normally from those who have some delay or disability.”

Damage to the myelination process is thought to contribute to a range of neurological and psychiatric illnesses, including autism and mental disability.

Myelination can be damaging in very premature babies, and the researchers said that they hope their new imaging technique would in future allow doctors to directly measure whether the treatments given to premature babies are able to help normal brain development.

Deoni’s team scanned 14 healthy babies who were born at full term.  They were scanned while they were asleep using a specially-modified, quiet, baby-friendly MRI scanner.

The scientists scanned the infants monthly between 3 and 11 months and found that by 9 months they were able to see that myelination had taken place in all areas of the brain.

“Until now, we’ve not been able to show how myelination develops in babies but this new MRI technique allows us to do just that,” Declan Murphy, also from King’s College London, who oversaw the research, told Reuters.

He said the technique could be used to understand how differences in the way brains are wired up relate to neurological and mental disorders that may not become obvious until later in life.

“The next step to scan premature babies and see how their myelin development differs from babies born full term, and how connections in the brains of babies who are at greater risk for developing autism differ from others,” he said.

On the Net:




comments powered by Disqus