Quantcast

Measuring The Most Distant Mature Galaxy Cluster

March 9, 2011

Young, but surprisingly grown-up

Astronomers have used an armada of telescopes on the ground and in space, including the Very Large Telescope at ESO’s Paranal Observatory in Chile to discover and measure the distance to the most remote mature cluster of galaxies yet found. Although this cluster is seen when the Universe was less than one quarter of its current age it looks surprisingly similar to galaxy clusters in the current Universe.

“We have measured the distance to the most distant mature cluster of galaxies ever found”, says the lead author of the study in which the observations from ESO’s VLT have been used, Raphael Gobat (CEA, Paris). “The surprising thing is that when we look closely at this galaxy cluster it doesn’t look young “” many of the galaxies have settled down and don’t resemble the usual star-forming galaxies seen in the early Universe.”

Clusters of galaxies are the largest structures in the Universe that are held together by gravity. Astronomers expect these clusters to grow through time and hence that massive clusters would be rare in the early Universe. Although even more distant clusters have been seen, they appear to be young clusters in the process of formation and are not settled mature systems.

The international team of astronomers used the powerful VIMOS and FORS2 instruments on ESO’s Very Large Telescope (VLT) to measure the distances to some of the blobs in a curious patch of very faint red objects first observed with the Spitzer space telescope. This grouping, named CL J1449+0856 [1], had all the hallmarks of being a very remote cluster of galaxies [2]. The results showed that we are indeed seeing a galaxy cluster as it was when the Universe was about three billion years old “” less than one quarter of its current age [3].

Once the team knew the distance to this very rare object they looked carefully at the component galaxies using both the NASA/ESA Hubble Space Telescope and ground-based telescopes, including the VLT. They found evidence suggesting that most of the galaxies in the cluster were not forming stars, but were composed of stars that were already about one billion years old. This makes the cluster a mature object, similar in mass to the Virgo Cluster, the nearest rich galaxy cluster to the Milky Way.

Further evidence that this is a mature cluster comes from observations of X-rays coming from CL J1449+0856 made with ESA’s XMM-Newton space observatory. The cluster is giving off X-rays that must be coming from a very hot cloud of tenuous gas filling the space between the galaxies and concentrated towards the center of the cluster. This is another sign of a mature galaxy cluster, held firmly together by its own gravity, as very young clusters have not had time to trap hot gas in this way.

As Gobat concludes: “These new results support the idea that mature clusters existed when the Universe was less than one quarter of its current age. Such clusters are expected to be very rare according to current theory, and we have been very lucky to spot one. But if further observations find many more then this may mean that our understanding of the early Universe needs to be revised.”

Notes

[1] The strange name refers to the object’s position in the sky.

[2] The galaxies appear red in the picture partly because they are thought to be mainly composed of cool, red stars. In addition the expansion of the Universe since the light left these remote systems has increased the wavelength of the light further so that it is mostly seen as infrared radiation when it gets to Earth.

[3] The astronomers measured the distance to the cluster by splitting the light up into its component colors in a spectrograph. They then compared this spectrum with one of a similar object in the nearby Universe. This allowed them to measure the redshift of the remote galaxies “” how much the Universe has expanded since the light left the galaxies. The redshift was found to be 2.07, which means that the cluster is seen about three billion years after the Big Bang.

More information

This research was presented in a paper, “A mature cluster with X-ray emission at z = 2.07″, by R. Gobat et al., published in the journal Astronomy & Astrophysics.

The team is composed of R. Gobat (Laboratoire AIM-Paris-Saclay, France), E. Daddi (AIM-Paris), M. Onodera (ETH Zrich, Switzerland), A. Finoguenov (Max-Planck-Institut fr extraterrestrische Physik [MPE], Garching, Germany), A. Renzini (INAF”“Osservatorio Astronomico di Padova), N. Arimoto (National Astronomical Observatory of Japan), R. Bouwens (Lick Observatory, Santa Cruz, USA), M. Brusa (MPE), R.-R. Chary (California Institute of Technology, USA), A. Cimatti (Università di Bologna, Italy), M. Dickinson (NOAO, Tucson, USA), X. Kong (University of Science and Technology of China), and M.Mignoli (INAF ““ Osservatorio Astronomico di Bologna, Italy).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organization in Europe and the world’s most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious program focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organizing cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and VISTA, the world’s largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-meter European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Image 1: This image is a composite of very long exposures taken with ESO’s Very Large Telescope in Chile and the NAOJ’s Subaru telescope on Hawaii. Most of the visible objects are very faint and distant galaxies. The clump of faint red objects to the right of center is the most remote mature cluster of galaxies yet found. Credit: ESO/NOAJ/Subaru/R. Gobat

Image 2: This image from the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) onboard the NASA/ESA Hubble Space Telescope shows CL J1449+0856, the most distant mature cluster of galaxies found. The image was taken in infrared light, with color data added from ESO’s Very Large Telescope and the NAOJ’s Subaru Telescope. Credit: NASA, ESA, R. Gobat (Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS”“Universit© Paris Diderot)

Image 3: This visible light wide-field image of the region around the most remote mature galaxy cluster yet found was created from photographs taken through red and blue filters and forming part of the Digitized Sky Survey 2. The cluster lies at the center of the picture but is too faint to be seen. The field of view is approximately 2.8 degrees across. Credit: ESO and Digitized Sky Survey 2. Acknowledgment: Davide De Martin

On the Net:


Measuring The Most Distant Mature Galaxy Cluster Measuring The Most Distant Mature Galaxy Cluster


comments powered by Disqus