Scientists Achieve Precise Control Of Virtual Flight
October 27, 2011

Scientists Achieve Precise Control Of Virtual Flight

Scientists have designed a novel, noninvasive system that allows users to control a virtual helicopter using only their minds, as reported in the online journal PLoS ONE on Oct. 26. The researchers, led by Dr. Bin He of University of Minnesota, created an EEG-based, noninvasive brain-computer interface that allowed users to accurately and continually navigate a virtual helicopter simply by thinking about where they wanted to craft to go.

The task required users to direct their helicopter through randomly positioned rings in three-dimensional space (videos of the task available); these targets were reached successfully 85% of the time.

Much of the previous work in this field required invasive treatments that allowed for measurement of intracranial activity, but this new approach employs EEG in the form of a cap on the user's head. This noninvasive technique records a particular brain wave called the sensorimotor rhythm, which in turn can be characterized and calibrated to control the movements of the on-screen helicopter.

According to lead research Dr. He, "this work demonstrates for the first time that one can accomplish real-time, continuous 3-dimensional control of a flying object in a virtual world from noninvasive EEG-based brain-computer interface. Such ability used to be limited in cases where invasive recordings are used, thus the work opens avenues to noninvasive bio-navigation, or neuroprosthetics."

Citation: Doud AJ, Lucas JP, Pisansky MT, He B (2011) Continuous Three-Dimensional Control of a Virtual Helicopter Using a Motor Imagery Based Brain-Computer Interface. PLoS ONE 6(10): e26322. doi:10.1371/journal.pone.0026322

Financial Disclosure: This work was supported in part by National Science Foundation CBET-0933067, National Institutes of Health RO1EB006433, and RO1EB007920. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interest Statement: The authors have declared that no competing interests exist.


Image Caption: Using specifically trained motor imaginations learned in single dimensional cursor tasks, subjects control the three-dimensional movement of a virtual helicopter. Raw EEG is temporally and spatially filtered to produce individualized control signal components. These components are weighted and digitized in a subject specific manner and output to influence control in the virtual world.


On the Net: