Quantcast

New Material May Lead To Much Cheaper Batteries

August 8, 2013
Image Caption: A membrane electrode assembly being inserted into a fuel cell testing stand. By creating several variations of membranes and studying them under similar conditions, the research team can predict the most optimal structure in an active and stable fuel cell. Credit: Patrick Mansell
redOrbit Staff & Wire Reports – Your Universe Online
Penn State researchers have created a new, cost-effective polymer membrane that decreases the cost of alkaline batteries and fuel cells by replacing costly platinum catalysts without sacrificing performance.

“We have tried to break this paradigm of tradeoffs in materials (by improving) both the stability and the conductivity of this membrane at the same time, and that is what we were able to do with this unique polymeric materials design,” said Michael Hickner, associate professor of materials science and engineering at Penn State.

In solid-state alkaline fuel cells, anion exchange membranes conduct negative charges between the device’s cathode and anode – the negative and positive connections of the cell – to create useable electric power. Most fuel cells currently use membranes that require platinum-based catalysts that, while effective, are expensive.

But Hickner’s polymer is a unique anion exchange membrane – a new type of fuel cell and battery membrane – that allows the use of much more cost-efficient non-precious metal catalysts, without compromising durability or efficiency like previous anion exchange membranes.

“What we’re really doing here is providing alternatives, possible choices, new technology so that people who want to commercialize fuel cells can now choose between the old paradigm and new possibilities with anion exchange membranes,” Hickner explained.

Creating this alternative took a nudge of intuition and a bit of good fortune, he added. In work led by Nanwen Li, a postdoctoral researcher in materials science and engineering, Hickner’s team created several variations of the membrane, each with slightly different chemical compositions. They ran each variation under simulated conditions to predict which would be optimal in an actual fuel cell. Based on these initial tests, the team predicted the membranes with long 16-carbon structures in their chemical makeup would provide the best efficiency and durability, as measured by conductivity and long-term stability, respectively.

The researchers then tested each possibility in an operating fuel cell device and measured the fuel cell’s output and lifetime for each material variation. Surprisingly, the membranes containing shorter 6-carbon structures proved to be much more durable and efficient after 60 hours of continuous operation.

“We were somewhat surprised … that what we thought was the best material in our lab testing wasn’t necessarily the best material in the cell when it was evaluated over time,” said Hickner.

The researchers are still trying to understand why the 6-carbon variation showed better long-term durability than the 16-carbon sample in the fuel cell, and are studying the operating conditions of the cell in detail, Hickner said.

Because the successful membrane was so much more effective than the initial lab studies predicted, the researchers are now interested in accounting for the interactions that the membranes experienced while inside the cell.

“We have the fuel cell output – so we have the fuel cell efficiency, the fuel cell life time – but we don’t have the molecular scale information in the fuel cell,” Hickner said.

“That’s the next step, trying to figure out how these polymers are working in the fuel cell on a detailed level.” The research was published in the Journal of the American Chemical Society.


Source: redOrbit Staff & Wire Reports - Your Universe Online



comments powered by Disqus