Quantcast

Self-Repairing Aircraft Mimics Nature

May 20, 2008

A new technique that mimics healing processes found in nature could enable damaged aircraft to mend themselves automatically, even during a flight.

As well as the obvious safety benefits, this breakthrough could make it possible to design lighter airplanes in future (see below). This would lead to fuel savings, cutting costs for airlines and passengers and reducing carbon emissions too.

The technique works like this. If a tiny hole/crack appears in the aircraft (e.g. due to wear and tear, fatigue, a stone striking the plane etc), epoxy resin would “Ëœbleed’ from embedded vessels near the hole/crack and quickly seal it up, restoring structural integrity. By mixing dye into the resin, any “Ëœself-mends’ could be made to show as colored patches that could easily be pinpointed during subsequent ground inspections, and a full repair carried out if necessary.

This simple but ingenious technique, similar to the bruising and bleeding/healing processes we see after we cut ourselves, has been developed by aerospace engineers at Bristol University, with funding from the Engineering and Physical Sciences Research Council (EPSRC). It has potential to be applied wherever fiber-reinforced polymer (FRP) composites are used. These lightweight, high-performance materials are proving increasingly popular not only in aircraft but also in car, wind turbine and even spacecraft manufacture. The new self-repair system could therefore have an impact in all these fields.

The technique’s innovative aspect involves filling the hollow glass fibers contained in FRP composites with resin and hardener. If the fibers break, the resin and hardener ooze out, enabling the composite to recover up to 80-90% of its original strength ““ comfortably allowing a plane to function at its normal operational load.

“This approach can deal with small-scale damage that’s not obvious to the naked eye but which might lead to serious failures in structural integrity if it escapes attention,” says Dr Ian Bond, who has led the project. “It’s intended to complement rather than replace conventional inspection and maintenance routines, which can readily pick up larger-scale damage, caused by a bird strike, for example.”

By further improving the already excellent safety characteristics of FRP composites, the self-healing system could encourage even more rapid uptake of these materials in the aerospace sector. A key benefit would be that aircraft designs including more FRP composites would be significantly lighter than the primarily aluminum-based models currently in service. Even a small reduction in weight equates to substantial fuel savings over an aircraft’s lifetime.

“This project represents just the first step”, says Ian Bond. “We’re also developing systems where the healing agent isn’t contained in individual glass fibers but actually moves around as part of a fully integrated vascular network, just like the circulatory systems found in animals and plants. Such a system could have its healing agent refilled or replaced and could repeatedly heal a structure throughout its lifetime. Furthermore, it offers potential for developing other biological-type functions in man-made structures, such as controlling temperature or distributing energy sources.”

The new self-repair technique developed by the current EPSRC-funded project could be available for commercial use within around four years.

The team is working with industrial partner Hexcel Composites Ltd, a manufacturer of composites for aerospace and other industrial applications.

In aircraft, FRP composites can be used in any part of the primary structure (fuselage, nose, wings, tailfin).

The resin used in the self-repair system is an off-the-shelf, Araldite-like substance. The team are currently developing a custom-made resin optimized for use in the system.

The dye mixed with the resin would be ultra-violet fluorescent and so would not show up in normal lighting conditions.

A similar technique developed at the University of Illinois involves the addition of microcapsules containing dicyclopentadiene, rather than epoxy resin contained in the glass fibers themselves. Such a system sees the rapid reaction of a liquid with a solid catalyst. The resulting plastic gives similar properties to the epoxy. However, the catalyst is based on ruthenium, an expensive and rare metal. The even distribution of capsules and catalyst within an FRP has also proven to be difficult.

Image 2: No hollow achievement: hollow glass fibers embedded in carbon fiber reinforced plastic could be the key to safer flying.

Image 3: Flying colors: fractured fiber-reinforced polymer under UV illumination showing how the “Ëœhealing agent’ bleeds into the damage.

On the Net:

Engineering and Physical Sciences Research Council

Bristol University


Self-Repairing Aircraft Mimics Nature Self-Repairing Aircraft Mimics Nature


comments powered by Disqus