January 21, 2011

Keio University and Oxford University Researchers Succeed in Entanglement, Essential for Quantum Computers, in Silicon Semiconductor (video available)

Tokyo, Jan 21, 2011 - (JCN Newswire) - Professor Kohei Itoh, who is developing quantum computers based on silicon semiconductors at Keio University's Faculty of Science and Technology, together with Dr. John Morton at Oxford University and others, has successfully generated and detected quantum entanglement between electron spin and nuclear spin in phosphorus impurities added to silicon. This is the world's first successful generation and detection of entanglement, which is essential for quantum computing, in silicon, which is used as a semiconductor in all computers. This accomplishment constitutes a major breakthrough toward the achievement of quantum computers.

"According to Moore's Law, which serves as the index for semiconductor microfabrication, by 2030, individual atoms in silicon will be used for computing," commented Professor Itoh. "The question of whether that kind of computing is possible was the starting point for my research, and as a way of approaching that question, I began to research computing using atoms in silicon. Now, we've performed the first successful experiment on computing using phosphorus atoms in silicon, and been able to create a special state called quantum entanglement. I am glad that this research has led to a world-first result: computing using atoms in silicon, the most important semiconductor."

The results of this research will be featured in the British science journal Nature (online edition) at 06:00 on January 19, 2011 (London time) (Japan time: 15:00 on January 20).

1. Background of the research (difference between classical and quantum computers)

Quantum computers work using entirely different principles from current computers ("classical computers"). This will enable them to do things that can't be done with classical computers. The phenomena that make this possible are quantum superposition and entanglement. Classical computers can only use states corresponding to one or other of the binary digits 0 and 1. By contrast, quantum bits, the minimum units for quantum computers, follow the laws of quantum mechanics instead of classical mechanics. In other words, they consist of individual quanta, in the form of atoms, electrons, and photons, and can represent 0 and 1 at the same time. This is called a superposition state. Another prerequisite for quantum computers is entanglement between at least two quantum bits. In an entangled state, individual quantum bits are entangled in a way that transcends space, so they cannot be separated and treated as 0 or 1.

2. Research results

This joint research by Keio University and Oxford University has achieved the first successful production and detection of entanglement in silicon, the most important semiconductor. In the industry, phosphorus impurities are added to silicon to produce n-type silicon. Phosphorus atoms in silicon at low temperatures, less than 20 K, capture an electron and behave like hydrogen atoms. Using this characteristics, the joint research group has produced and detected entanglement between two quantum bits by treating the nuclear spin of a phosphorus atom as one quantum bit and the captured electron's spin as another quantum bit. The achievement was phenomenally successful in that entanglement was produced at once for each of a large number of phosphorus impurities that exist in the sample in the order of 10 to the power of 10. The process of generating entanglement itself is equivalent to quantum computing.

The main reason such experiments have not been reported until now is that the coherence of quantum bits in silicon was too short. In ordinary silicon, the quantum information in phosphorus impurities is lost before entanglement is generated and measured. To solve this problem, Keio University made coherence sufficiently long by ensuring that all the atoms in the silicon were the isotope 28Si, while a special magnetic resonance apparatus belonging to Oxford University produced a field of 3.4 Tesla at a temperature below 3 K, to obtain high polarization of electron spin and nuclear spin in phosphorus. Success in both those aspects of the experiment led to these research results.

3. A breakthrough toward quantum computing

In response to the question "What is a state-of-the-art quantum computer?", the usual example cited is a nuclear magnetic resonance (NMR) result with seven quantum bits, where the prime factorization 15 = 3 x 5 was performed successfully [L. Vanersypen, et al., Nature Vol. 414, 883 (2001)]. However, in the NMR research, the same number of calculation steps as in a classical computer was required to make it seem as if seven quantum bits in molecules were aligned, and entanglement was not obtained either. In other words, the result only showed that the quantum algorithm for prime factorization could be simulated using classical computing. By contrast, in this research, by using a low temperature and high magnetic field, and careful arrangements for quantum computing, quantum bits were initialized in a very small number of steps, and entanglement was successfully generated and detected. Moreover, the fact that the entanglement state was achieved in a large number of phosphorus atoms added to silicon constitutes a major breakthrough toward a solid-state quantum computer.

This research was conducted as part of "Quantum spintronics based on donor impurities in isotope-controlled silicon" (research representative in Japan: Prof. Kohei Ito; research representative in the UK: Dr. John Morton), a project in the JST's "Strategic International Cooperative Program" with the UK's EPSRC.

Video about the research results (6 minutes) will be available on the Kohei Itoh Laboratory Web site at:


What is entanglement?

Entanglement will be explained using the example of two spatially separated quanta, in London and Tokyo. Suppose that, in both Tokyo and London, a quantum bit is in a superposition state, where its value is both 0 and 1. If the state is determined from before it is measured, but not known until it is measured, the bit is in a classical state, not a quantum state. In a quantum state, before the quantum bit is measured, its state is both 0 and 1, but the instant the state is measured, it becomes a classical state of 0 or 1. Measuring the quantum bit turns it into a classical bit! A case where there is a correlation between the bits, so if the quantum bit in Tokyo is measured and the value 0 is obtained, the quantum bit in London must be 1, and if the Tokyo bit is 1, the London bit must be 0. This is also called entanglement, as the two bits cannot be separated. Even though each of the bits, in Tokyo and London, has a state that is both 0 and 1, the instant the bit in Tokyo is measured and takes the classical state 1, it is determined that the London bit has the value 0. This correlation, which transcends space, exemplifies the mysterious nature of quantum mechanics, which cannot be explained using classical mechanics.

About Keio University

Keio has a proud history as Japan's very first private institution of higher learning, which dates back to the formation of a school for Dutch studies in 1858 in Edo (now Tokyo) by founder Yukichi Fukuzawa. Since the school's inception, the students of Keio have risen to the forefront of innovation in every imaginable academic field, emerging as social and economic leaders. In today's internationally interdependent world, Keio places great effort upon maintaining the finest teaching faculty and superlative facilities. Based on the knowledge and experience of their predecessors, today's Keio students strive to develop the leadership qualities that will enable them to make valuable contributions to tomorrow's society. In 2008 the University celebrated its 150th anniversary.

About JST

Japan Science and Technology Agency (JST) is an integrated organization of science and technology in Japan that establishes an infrastructure for the entire process from the creation of knowledge to the contribution to the society.


Professor Kohei Itoh
Department of Applied Physics & Physico-Informatics
Faculty of Science & Technology
Keio University
Phone: +81-45-566-1594
Fax: +81-45-566-1587
Mail: [email protected]

To Kou
Department of International Affairs
Japan Science and Technology Agency
Phone: +81-3-5214-7375
Fax: +81-3-5214-7379
Mail: [email protected]

Other contacts:

Public Relations Office
Keio University
Phone: +81-3-5427-1541
Fax: +81-3-5441-7640
Mail: [email protected]

Department of Public Relations & Science Portal
Japan Science and Technology Agency
Phone: +81-3-5214-8404
Fax: +81-3-5214-8432
Mail: [email protected]

Source: JCN http://www.japancorp.net

Copyright 2011 JCN Newswire. All rights reserved. www.japancorp.net