Quantcast
Last updated on April 24, 2014 at 17:35 EDT

Swift Detect First-Ever Changes in an Exoplanet Atmosphere

June 28, 2012

The exoplanet HD 189733b lies so near its star that it completes an orbit every 2.2 days. In late 2011, NASA’s Hubble Space Telescope found that the planet’s upper atmosphere was streaming away at speeds exceeding 300,000 mph. Just before the Hubble observation, NASA’s Swift detected the star blasting out a strong X-ray flare, one powerful enough to blow away part of the planet’s atmosphere.

The scientists conclude the atmospheric variations occurred in response to a powerful eruption on the planet’s host star, an event observed by NASA’s Swift satellite.

“The multiwavelength coverage by Hubble and Swift has given us an unprecedented view of the interaction between a flare on an active star and the atmosphere of a giant planet,” said lead researcher Alain Lecavelier des Etangs at the Paris Institute of Astrophysics (IAP), part of the French National Scientific Research Center located at Pierre and Marie Curie University in Paris.

The exoplanet is HD 189733b, a gas giant similar to Jupiter, but about 14 percent larger and more massive. The planet circles its star at a distance of only 3 million miles, or about 30 times closer than Earth’s distance from the sun, and completes an orbit every 2.2 days. Its star, named HD 189733A, is about 80 percent the size and mass of our sun.

Credit: NASA/Goddard Space Flight Center/Conceptual Image Lab