Latest Domain wall Stories

2013-09-24 10:51:07

Visualization of domain wall motion: Material defects do not impede wall motion at high velocities While searching for ever smaller devices that can be used as data storage systems and novel sensors, physicists at Johannes Gutenberg University Mainz (JGU) have directly observed magnetization dynamics processes in magnetic nanowires and thus paved the way for further research in the field of nanomagnetism. Small magnetic domain wall structures in nanowires can be used to store information...

2010-11-23 14:00:00

So far, it has only been possible to image magnetic domains in 2 dimensions. Now, for the first time, Scientists at Helmholtz-Zentrum Berlin have managed to create 3-dimensional images of these domains deep within magnetic materials Every magnetic material is divided into such magnetic domains. Scientists call them "Weiss domains" after physicist Pierre-Ernest Weiss, who predicted their existence theoretically more than a hundred years ago. In 1907, he recognized that the magnetic moments of...

2010-08-10 15:37:15

Just as the path of photons of light can be directed by a mirror, atoms possessing a magnetic moment can be controlled using a magnetic mirror. Research reported in the Journal of Applied Physics investigates the feasibility of using magnetic domain walls to direct and ultimately trap individual atoms in a cloud of ultracold atoms. "We are looking for ways to build magnetic systems that can manipulate atoms," says author Thomas Hayward of the University of Sheffield in the United Kingdom. "By...

2010-06-10 13:01:37

After running a series of complex computer simulations, researchers have found that flaws in the structure of magnetic nanoscale wires play an important role in determining the operating speed of novel devices using such nanowires to store and process information. The finding*, made by researchers from the National Institute of Standards and Technology (NIST), the University of Maryland, and the University of Paris XI, will help to deepen the physical understanding and guide the...

2009-01-29 14:20:12

Exploring the ultimate nanoscale for future electronics The logic and memory functions of future electronic devices could shrink dramatically "“ to one or two nanometers (billionths of a meter) instead of the many tens of nanometers that characterize today's most advanced elements - if a way can be found to control domain walls, the ultrathin transition zones that separate regions of a material having different magnetic, electric, or other properties. In a material called bismuth...

Word of the Day
  • The hard inner (usually woody) layer of the pericarp of some fruits (as peaches or plums or cherries or olives) that contains the seed.
This word comes from the Greek 'endon,' in, within, plus the Greek 'kardia,' heart.