Quantcast

Latest Fusion reactors Stories

Big Step To Develop Nuclear Fusion Power
2012-06-08 10:21:56

UT researchers have successfully developed a key technology in developing an experimental fusion reactor Imagine a world without man-made climate change, energy crunches or reliance on foreign oil. It may sound like a dream world, but University of Tennessee, Knoxville, engineers have made a giant step toward making this scenario a reality. UT researchers have successfully developed a key technology in developing an experimental reactor that can demonstrate the feasibility of fusion...

2012-01-09 14:03:42

Scientists at Universidad Carlos III de Madrid (UC3M), Oxford University (United Kingdom) and the University of Michigan (USA) have joined efforts to develop new materials for thermonuclear fusion reactors. Their research focuses on characterization of oxide dispersion-strengthened, reduced-activation steel for the reactor structure. Thermonuclear fusion promises to be a possible solution to the current energy crisis. It is produced when two atomic nuclei of light elements combine to...

2011-11-11 16:47:19

News from the 53rd Annual Meeting of the APS Division of Plasma Physics Recent experiments carried out at the DIII-D tokamak in San Diego have allowed scientists to observe how fusion plasmas spontaneously turn off the plasma turbulence responsible for most of the heat loss in plasmas confined by toroidal magnetic fields. Using a new microwave instrument based on the same principles as police radar guns, researchers from UCLA observed the complex interplay between plasma turbulence and...

2011-11-11 16:46:19

News from the 53rd Annual Meeting of the APS Division of Plasma Physics Research on the Alcator C-Mod experiment at MIT has made an unexpected connection between two seemingly unrelated but important phenomena observed in tokamak plasmas: spontaneous plasma rotation and the global energy confinement of the plasma. Self-generated flows, the spontaneous plasma rotation which arises even when there is no external momentum input, can have a strong beneficial effect on plasma transport and...

2011-11-11 16:42:28

News from the 53rd Annual Meeting of the APS Division of Plasma Physics A key challenge in producing fusion energy is confining the plasma long enough for the ionized hydrogen to fuse and produce net power. Suppressing plasma turbulence is one approach to this, but the resulting increase in energy confinement is usually accompanied by undesirable increases in particle and impurity confinement, which can lead to plasma contamination and ash accumulation–and reduced power. At MIT's...

2011-11-11 14:17:46

News from the 53rd Annual Meeting of the APS Division of Plasma Physics Tokamaks–a leading design concept for producing nuclear fusion energy–can, under certain rare fault conditions, produce beams of very energetic "runaway" electrons that have the potential to damage interior surfaces of the device. In the event of such a fault, a tokamak-based nuclear fusion power plant will have to employ protection systems to prevent any damage. Now, scientists at the DIII-D National...

2011-11-11 01:51:31

News from the 53rd Annual Meeting of the APS Division of Plasma Physics A fusion reactor operates best when the hot plasma inside it consists only of fusion fuel (hydrogen's heavy isotopes, deuterium and tritium), much as a car runs best with a clean engine. But fusion fuel reactions at the heart of magnetic fusion reactors also create leftovers–helium "ash." The buildup of this helium ash and other impurities can cool the hot plasma and reduce fusion power. Research at the MIT...

2011-11-11 01:49:29

News from the 53rd Annual Meeting of the APS Division of Plasma Physics A major upgrade to the DIII-D tokamak fusion reactor operated by General Atomics in San Diego will enable it to develop fusion plasmas that can burn indefinitely. Researchers installed a movable, 30-ton particle-beam heating system that drives electric current over a broad cross section of the magnetically confined plasma inside the reactor's vacuum vessel. Precise aiming of this beamline allows scientists to vary the...

2011-11-11 01:44:33

News from the 53rd Annual Meeting of the APS Division of Plasma Physics To achieve nuclear fusion for practical energy production, scientists often use magnetic fields to confine plasma. This creates a magnetic (or more precisely "magneto-hydrodynamic") fluid in which plasma is tied to magnetic field lines, and where regions of plasma can be isolated and heated to very high temperatures–typically 10 times hotter than the core of the sun! At these temperatures the plasma is nearly...

2011-08-05 14:03:37

An instrument developed by researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has enabled a research team at a fusion energy experiment in China to observe--in startling detail--how a particular type of electromagnetic wave known as a radiofrequency (RF) wave affects the behavior of hot ionized gas.  In the experiment at EAST (the Experimental Advanced Superconducting Tokamak located at the Institute of Plasma Physics in Hefei, China), scientists...


Word of the Day
tessitura
  • The prevailing range of a vocal or instrumental part, within which most of the tones lie.
This word is Italian in origin and comes from the Latin 'textura,' web, structure.